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Introduction. “Pell’s Problem” is to display integer solutions of the Diophantine
equation

x2 − ny2 = 1 : n not a perfect square
The problem was already ancient by the time it was posed by John Pell [1611–
1685] and—a few years before him—by Fermat. The case n = 2 had been
considered by Pythagorous and contemporary Indian mathematicians; it had
been discussed in some generality by Brahmagupta [598–c.670] and the general
solution was provided by Bhaskara in 1150. Its mistaken attribution to Pell is
due to Euler, after whom the problem attracted the interest of (among others)
Lagrange.1

The material reported here derives from recent correspondence with Ahmed
Sebbar, of the Institut de Mathématique de Bordeaux, Université de Bourdeaux,
with whom I have recently been in correspondence in mainly other connections.

Algebraic group implicit in Pell’s equation. The requirement that the matrix

M =
(

x
√

ny√
ny x

)
(1)

be unimodular (det M = 1) entails

x2 − ny2 = 1 (2)

which inscribes a hyperbola (“Pell-Fermat conic”) on the xy-plane. The set of
such matrices is multiplicatively closed

(
x1

√
ny1√

ny1 x1

) (
x2

√
ny2√

ny2 x2

)
=

(
x12

√
ny12√

ny12 x12

)
(3)

x12 = x1x2 + ny1y2

y12 = x1y2 + y1x2

1 For further information and references concerning this rich subject, see the
excellent Wikipedia article “Pell’s Equation.”
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Associativity is automatic, commutativity is easily confirmed, and the set
obviously contains the identity I among its elements. We can therefore look
upon such matrices as representatives of the elements of a certain Abelian group.
The group composition law can be notated

{x1, y1} ∗ {x2, y2} = {x1x2 + ny1y2, x1y2 + y1x2} (4.1)

The identity has in this notation become {1, 0} and the inverse is given by

{x, y}inverse = {x,−y} (4.2)

Forming the determinants of the left/right sides of (3) we obtain Brahmagupta’s
identity

(x2
1 − ny2

1)(x2
2 − ny2

2) = (x1x2 + ny1y2)2 − n(x1y2 + y1x2)2 (5)

from which it follows that

if (x, y )n is a pair of Pell integers then so is (x2 + ny2, 2xy)n (6.1)

and that

if (x1, y1)n, (x2, y2)n are two such Pell pairs, then
so is (x1x2 + ny1y2, x1y2 + y1x2)n a Pell pair

(6.2)

For example, the leading Pell pair in the case n = 2 is (3, 2)2, which by (6.1)
yields the Pell pair (17, 12)2. Introducing those pairs into (6.2) gives (99, 70)2.
We note in passing that the line (3, 2)2 −→ (17, 12)2 has slope 10

14 , while the line
(1, 0)2 −→ (99, 70)2 has slope 70

98 , and that 10
14 = 70

98 . This reflects a remarkable
general circumstance:
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When one consults tables of leading Pell pairs (x, y)n for ascending values
of n (such as the one that appears in the Wikipedia article cited above), two
cases stand out. The first of those is the famous case

(1766319049, 226153980)61

and the next—which I display in the context of its neighbors—is

(1351, 130)108
(158070671986249, 15140424455100)109
(21, 2)110
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Sebbar’s generalization. Sebbar, noting that the matrix M is a circulant matrix,
looks to the group of unimodular circulant matrices of next higher order

S =




x y z
z x y
y z x



 = xI + yP1 + zP2 (7)

The matrices P are permutation matrices, and provide a representation of the
cyclic group of order 3: P2

1 = P2, P3
1 = I. The unimodularity condition reads

f(x, y, z) ≡ det S = x3 + y3 + z3 − 3xyz = 1 (8)

and inscribes in xyz-space a cubic surface that resembles a witch’s hat (is
sometimes called “Jonas’ hexenhut”) with axis coincident with the principal
diagonal of the unit cube. The set of such matrices is multiplicatively closed

{x1, y1, z1} ∗ {x2, y2, z2} = {x12, y12, z12} (9)
x12 = x1x2 + y1z2 + z1y2

y12 = x1y2 + y1x2 + z1z2

z 12 = x1z2 + y1y2 + z1x2

Associativity is automatic, commutativity is established by calculation, and the
identity lives obviously at {1, 0, 0}. Finally, matrix inversion supplies

{x, y, z}inverse = {x2 − yz, z2 − xy, y2 − zx}
The set of S-matrices constitutes therefore a representation of a certain Abelian
group.

From product of determinants = determinant of product we have the
remarkable identity

f(x1, y1, z1)f(x2, y2, z2) = f(x12, y12, z12) (10)

which can be looked upon as a generalization of Brahmagupta’s identity, the
3rd-order member of an infinite tower of such identities of ascending order. From
(10) and the structure (8) of f we see that if (x1, y1, z1) are integers that satisfy
f(x1, y1, z1) = 1, and if so also are (x2, y2, z2), then so also are the integers
(x12, y12, z12). In particular, if f(x, y, z) = 1 then so does

f(x2 + 2yz, z2 + 2xy, y2 + 2zx) = 1 (11)

Sebbar does not attempt to exhibit integer solutions of f(x, y, z) = 1.
Trivial solutions are (1, 0, 0), (0, 1, 0) and (0, 0, 1). But when introduced into
(10) or (11) those simply cycle among themselves. We confront therefore the

PROBLEM: Exhibit a non-trivial integral solution of

x3 + y3 + z3 − 3xyz = 1

Some ramifications. Returning briefly—for motivational purposes—to the Pell
equation, the eigenvalues of the circulant matrix M are

u = x +
√

ny

v = x −
√

ny
(12)
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so we have
det M = uv

Look to the differential operator

≡ ∂ 2
x − 1

n∂ 2
y =

{ Laplacian in the case n = −1
d’Alembertian in the case n = +1

Passing by means of (12) from xy-variables to uv-variables, we by

∂x = ∂u + ∂v, ∂y =
√

n(∂u − ∂v)

have
= 4∂u∂v

Solutions of W (u, v) = 0 are of the form2

W (u, v) = F (u) + G(v) = F (x +
√

ny) + G(x −
√

ny)

of which a particular (the “fundamental”) instance is

W(u, v) = log uv = log(x2 − ny2)

This function is real/complex according as x2−ny2 ≷ 0 (it is, in particular, real
on the Pell-Fermat conic x2 −ny2 = 1) and singular on the lines asymptotic to
the conic: u = v = 0. By translational displacement we obtain the solution

Wh(x, y) = log(x2 − ny2 − 2hx + h2)

which on the conic becomes wh(x) = log(1 − 2hx + h2). This function is
proportional to a generator—familiar from 2-dimensional potential theory—
of the Chebyschev polynomials of the first kind:

− 1
2wh(x) = log 1√

1 − 2hx + h2
=

∞∑

k=1

Tk(x) hk

k

The handbooks remind us that those polynomials satisfy the recursion relation

Tk+1(x) = 2xTk(x) − Tk−1(x)

the differential equations

(1 − x2)Tk
′′(x) − xTk

′(x) + k2Tk(x) = 0

and the orthonormality relations

∫ +1

−1
Tj(x)Tk(x) dx√

1 − x2
=






0 : j &= k
π : j = k = 0
1
2π : j = k &= 0

2 This result is most familiar as encountered in 1-dimensional wave theory.
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For discussion of another connection between the Pell equation and Chebyshev
polynomials of the 1st and 2nd kinds, see theWikipedia articles “Pell’s Equation”
(cited previously) and “Chebyshev Polynomials.”

It is within the context of those remarks that (with Sebbar) we observe that
the eigenvalues of 3-dimensional circulant matrix S are the complex numbers
u, v, w given by3




u
v
w



 =




1 1 1
1 ω ω2

1 ω2 ω








x
y
z





where
ω = − 1

2 + i 1
2

√
3 = (1)

1
3

ω2 = − 1
2 − i 1

2

√
3

Inversely 


x
y
z



 = 1
3




1 1 1
1 ω2 ω
1 ω ω2








u
v
w





So
∂u = 1

3 (∂x + ∂y + ∂z)

∂v = 1
3 (∂x + ω2∂y + ω∂z)

∂w = 1
3 (∂x + ω∂y + ω2∂z)

from which we obtain Sebbar’s 3rd-order differential operator

≡ 27 ∂u∂v∂w = ∂ 3
x + ∂ 3

y + ∂ 3
z − 3 ∂x∂y∂z

We have

W (u, v, w) = 0 ⇐⇒ W (u, v, w) = F (u, v) + G(u, w) + H(v, w)

or which a particular instance is

W(u, v, w) = log(uvw) = log(x3 + y3 + x3 − 3xyz)

We have
det S = uvw = x3 + y3 + x3 − 3xyz

so the singularity of W(u, v, w) coincides with the singularity of S.

3 These results are characteristic of the general theory of circulant matrices;
see the Wikepedia article “Circulant Matrices.” In the 2-dimensional theory we
might, in this spirit, have written

(
u
v

)
=

(
1 1
1 ω

) (
x
y

)
with ω = −1 = (1)

1
2
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Translational displacement produces the solution

Wh(u, v, w) = log[(x − h)3 + y3 + x3 − 3(x − h)yz]

= log[(x3 + y3 + z3 − 3xyz) + 3xh2 − h3 − 3h(x2 − yz)]

which on the circular curve where the cubic surface x2 − yz = 0 intersects the
hexenhut x3 + y3 + z3 − 3xyz = 1 becomes

wh(x) = log(1 + 3xh2 − h3) =
∞∑

n=0

hnPn(x)

with
P0 = 0
P1 = 0
P2 = 3x

P3 = −1

P4 = − 9
2x2

P5 = 3x

P6 = − 1
2 + 9x3

P7 = −9x2

P8 = 3x − 81
4 x4

P9 = − 1
3 + 27x3

P10 = − 27
2 x2 + 243

5 x5

P11 = 3x − 81x4

P12 = − 1
4 + 54x3 − 243

2 x6

P13 = −18x2 + 243x5

P14 = 3x − 405
2 x4 + 2187

7 x7

P15 = − 1
5 + 90x3 − 729x6

P16 = − 45
2 x2 + 729x5 − 6561

8 x8

P17 = 3x − 405x4 + 2187x7

Sebbar asserts that “these polynomials are very interesting; they satisfy a four-
term recursion relation, a third-order differential equation, and are related to
elliptic functions.” To me they seem, however, quite uninteresting; Pn(x) is not
of order n, and they are not linearly independent—we have, for example, the
identities

P0 = P1

P2 = P5

P4 = 1
2P7

P9 = 3P6 − 7
6P3

P13 = 5P10 − 11
2 P7

P15 = 6P12 − 26
3 P9 + 143

90 P3

P17 = 7P14 − 25
2 P11 + 39

6 P5...

so orthogonality is out of question.
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Nonexistence of Pell triples. Returning to the PROBLEM posed on page 3: It
is clear that if one of the variables {x, y, z} in

x3 + y3 + z3 − 3xyz = 1

is 0 then the others must be {1, 0}, so we are led back to the three trivial cases
mentioned on page 3. It is clear also that if {x, y, z} are some permutation of

{even, even, even} then x3 + y3 + z3 is even and 3xyz is even
{even, even, odd } then x3 + y3 + z3 is odd and 3xyz is even
{even, odd, odd } then x3 + y3 + z3 is even and 3xyz is even
{ odd, odd, odd } then x3 + y3 + z3 is odd and 3xyz is odd

so their difference can be 1 (odd) only in cases of the type {even, even, odd}.
In the least such case we have

23 + 23 + 13 − 3 · 2 · 2 · 1 = 5

I conclude that “Pell triples” do not exist, and suspect that it was because
Sebbar was aware of this elementary fact that he does not even mention the
integer aspects of his “generalized Pell problem.”


